

Impacts of wildfire and climate patterns on vegetation dynamics in the grasslands of the Southwest

Allison Drake
Department of Geosciences
University of Arizona
August 19, 2003

→The significance of wildfire, climate and society in the Southwest

Introduction to vegetation models

- Research questions
- Bringing information to decision-makers, stakeholders and educators

Significance of wildfire, climate and society in the Southwest

- Woody encroachment into grasslands
- Human-caused ignition at urban-wildland interface
- Costs
- Damages
- Land/Fire management
- Climate change/variability

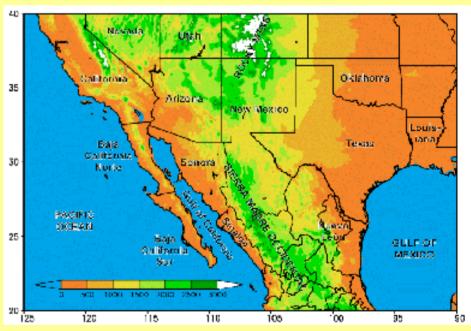
Example: Aspen Fire

Aspen Fire, 2003 Photo from Arizona Daily Star

Factors involved

Climate

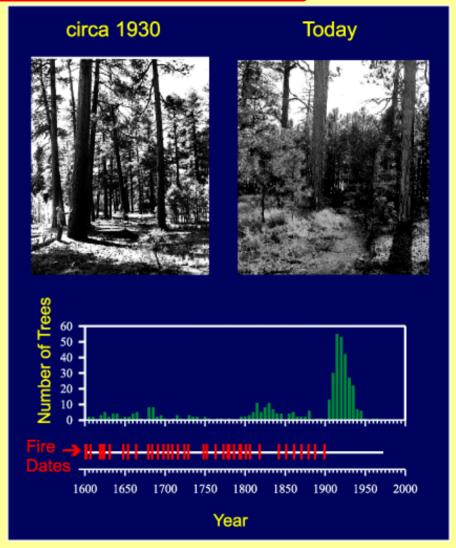
Fire


Society

Aspen Fire, 2003 Photo from Arizona Daily Star

Climate of the Southwest

- Subtropical high-pressure ridge
 - Low precip, clear skies, warm weather
- Proximity to moist air mass sources
 - Pacific Ocean, Gulf of California and Gulf of Mexico
- Seasons: wet & dry
 - Wet = summer and winter
 - Dry = fall and spring
- Climate Forcings
 - El Nino/La Nina shifts
 - Pacific Decadal Oscillation
- Topography
 - Induces spatial variation



CLIMAS, University of Arizona

Fire History

• 1600-1910:

- Frequent fires often killed encroaching plants
- Fire naturally enhanced growth of some perennial grasses
- Late 1800s: overgrazing-induced suppression of surface fires.
- Abrupt fire regime change:
 - After 1910: active fire suppression, increased fuel loads and fire potential
 - Roads and trails continue to encroach into wilderness; dangerous to homes and wildlands

Tree Ring Laboratory, University of Arizona

Society

Wildland-urban interface

- Structures and roads
- Fragmentation of natural ecosystems

Management

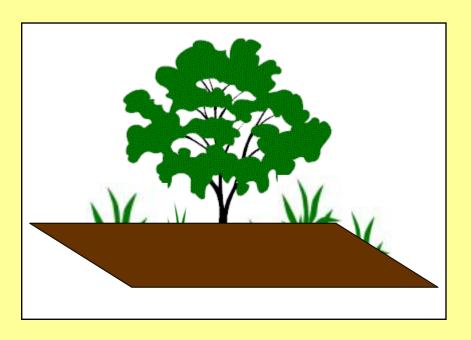
- Fire
- Agriculture

Policy

- Fire prevention/fighting
- Land-use restrictions
- Wilderness protection

www.colostate.edu/Depts/CSFS/fire/interface

 The significance of wildfire, climate and society in the Southwest


→Introduction to vegetation models

- Research questions
- Bringing information to decision-makers, stakeholders and educators

What is a Gap Dynamics Vegetation Model?

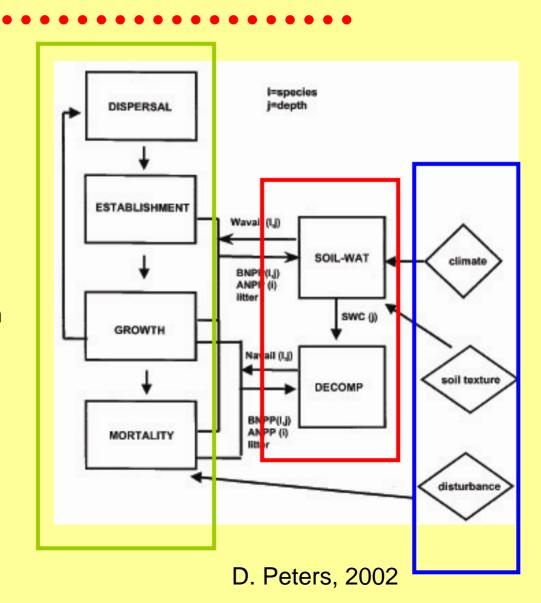
Gap model - conceptual model of a forest stand

- "gap" canopy gap created by death of dominant plant
- •Gap-phase regeneration continual growth cycle of a forest stand

Plot characteristics:

- size =gap dominant plant makes when it dies
- Horizontally homogeneous
- Vertically heterogeneous

Simulate:


- Seedling establishment
- Annual diameter growth
- Mortality (over multiple generations of tree replacement)

Controls of environment:

- Available light
- Soil moisture and fertility
- Temperature


How does ECOTONE work?

- Driving variables: set the base conditions for how the model will simulate different soil and plant processes.
- Major plant processes:
 represent the typical life cycle of
 plants, where dispersal is a
 function of plants once they reach
 a certain maturity.
- Submodels of soilwater and nitrogen dynamics allow feedbacks between the major plant processes and the driving variables.

Adding Fire

- Forest dynamics:
 - Climate
 - Establishment, growth, death, decay
 - Soil moisture
 - Nutrient exchange
- Fire model adds
 - fuel
 - Fuel moisture
 - Fire intensity

C. Miller, 1999

 The significance of wildfire, climate and society in the Southwest

Introduction to vegetation models

→ Research questions

 Bringing information to decision-makers, stakeholders and educators

Research Goals

- Validate vegetation model for southeast Arizona
 - Using long-term data from test site in Huachuca mountains
- Simulate past → future vegetation changes in SW to:
 - Test the response of vegetation to various climate, fire, grazing and policy scenarios
 - Determine which scenarios cause max/min change
 - Find thresholds of fire frequencies and management strategies that a predicted climate can support
 - Grazing > climate or fire on altering vegetation over time
 - Invasion of certain encroaching species (e.g. creosote, mesquite, black/blue grama)

This summer:

 Fuel mapping in Jemez Mountains in northern New Mexico

- Preparation work for modeling:
 - Collecting historical data for test site in Huachuca Mountains
 - Formatting data to run with the model

- The significance of wildfire, climate and society in the Southwest
- Introduction to vegetation models

- Research questions
- → Bringing information to decision-makers, stakeholders and educators

WALTER Research

- What are the climate and human dimensions of wildfire, and how do these interact to produce particular types and levels of wildfire and fire hazard?
- How might climatic changes, in combination with changing landuse patterns, affect forest health, biodiversity, and ecosystem functioning?
- How might land-use choices increase or decrease vulnerability of ecosystems to extreme weather events?

http://walter.arizona.edu

Exhibit on Wildfire

- Educational multi-media display on fire, climate and society
- To be displayed at the Flandrau Science Center at the University of Arizona

Thanks to:
Jonathan Overpeck, Tom Swetnam, Julio Betancourt,
Jay Miller, Steve Yool, Randy Balice, Susan Skirvin